skip to main content


Search for: All records

Creators/Authors contains: "Labonté, Jessica M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Estuaries provide many ecosystem services and host a majority of the world’s population. Here, the response of microbial communities after a record-breaking flood event in a highly urbanized estuary was followed. Hurricane Harvey (hereafter Harvey) was a category 4 hurricane that made landfall on the Texas coast in 2017 and lashed the Houston area with 1.4–1.7 × 1010 m3 of rainfall, disrupting the natural gradients of nutrients and salinity. Here, we utilized metagenomics to analyze how Harvey altered the microbial community of Galveston Bay over five weeks following the storm. We hypothesized that the community would shift from a marine dominated community to that of a terrestrial and freshwater origin. We found that following the storm there were changes in the distribution of species with specific metabolic capacities, such as Cyanobacteria, enriched in oxygenic photosynthesis and nitrogen fixation genes, as well as Verrucomicrobia and Betaproteobacteria, with high prevalence of the SOX complex and anoxygenic photosynthesis genes. On the other hand, dominant members of the community with more diverse metabolic capabilities showed less fluctuations in their distribution. Our results highlight how massive precipitation disturbances can alter microbial communities and how the coalescence of diverse microorganisms creates a resilient community able to maintain ecosystem services even when the system is in an altered state.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Sulfate-reducing bacteria Candidatus Desulforudis audaxviator (CDA) were originally discovered in deep fracture fluids accessed via South African gold mines and have since been found in geographically widespread deep subsurface locations. In order to constrain models for subsurface microbial evolution, we compared CDA genomes from Africa, North America and Eurasia using single cell genomics. Unexpectedly, 126 partial single amplified genomes from the three continents, a complete genome from of an isolate from Eurasia, and metagenome-assembled genomes from Africa and Eurasia shared >99.2% average nucleotide identity, low frequency of SNP’s, and near-perfectly conserved prophages and CRISPRs. Our analyses reject sample cross-contamination, recent natural dispersal, and unusually strong purifying selection as likely explanations for these unexpected results. We therefore conclude that the analyzed CDA populations underwent only minimal evolution since their physical separation, potentially as far back as the breakup of Pangea between 165 and 55 Ma ago. High-fidelity DNA replication and repair mechanisms are the most plausible explanation for the highly conserved genome of CDA. CDA presents a stark contrast to the current model organisms in microbial evolutionary studies, which often develop adaptive traits over far shorter periods of time.

     
    more » « less